
Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Widening as Abstract Domain

Bogdan Mihaila, Alexander Sepp and Axel Simon

Technical University Munich, Germany
May 15, 2013

x∇y

1/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Overview
Improving State after Widening
Real-World Challenges

Widening in Abstract Interpretation

Static program analysis:

I use abstract domains to represent program states

I execute abstract semantics of program statements

I compute a fixpoint that over-approximates all possible
program behaviors

1 int x = y = 0;

2 while (x < 6) {

3 p_0:

4 x = x + 1;

5 y = y + 1;

6 }

7 p_1:

State at p_0:

1

2

1 2 3

y

x

3

4 5 6

4

5

6

2/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Overview
Improving State after Widening
Real-World Challenges

Widening in Abstract Interpretation

Static program analysis:

I use abstract domains to represent program states

I execute abstract semantics of program statements

I compute a fixpoint that over-approximates all possible
program behaviors

1 int x = y = 0;

2 while (x < 6) {

3 p_0:

4 x = x + 1;

5 y = y + 1;

6 }

7 p_1:

State at p_0:

1

2

1 2 3

y

x

3

4 5 6

4

5

6

2/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Overview
Improving State after Widening
Real-World Challenges

Widening in Abstract Interpretation

Static program analysis:

I use abstract domains to represent program states

I execute abstract semantics of program statements

I compute a fixpoint that over-approximates all possible
program behaviors

1 int x = y = 0;

2 while (x < 6) {

3 p_0:

4 x = x + 1;

5 y = y + 1;

6 }

7 p_1:

State at p_0: (widened)

1

2

1 2 3

y

x

3

4 5 6

4

5

6

2/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Overview
Improving State after Widening
Real-World Challenges

Widening in Abstract Interpretation

Static program analysis:

I use abstract domains to represent program states

I execute abstract semantics of program statements

I compute a fixpoint that over-approximates all possible
program behaviors

1 int x = y = 0;

2 while (x < 6) {

3 p_0:

4 x = x + 1;

5 y = y + 1;

6 }

7 p_1:

State at p_0: (narrowed)

1

2

1 2 3

y

x

3

4 5 6

4

5

6

x≤6

2/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Overview
Improving State after Widening
Real-World Challenges

Widening in Abstract Interpretation

Idea of widening:

I some domains have infinite ascending chains:
[0, 0] [0, 1] [0, 2] . . .

I widening is needed for termination

Definition:
Given a domain D, define ∇ : D ×D → D such that ∀x , y ∈ D:

x v x∇y and y v x∇y

and for all increasing chains x0 v x1 v . . . the increasing chain
y0 = x0, . . . yi+1 = yi∇xi+1 is eventually stable.

I widening seems to require a modified fixpoint computation

I cannot easily adapt widening strategies

3/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Overview
Improving State after Widening
Real-World Challenges

Widening in Abstract Interpretation

Idea of widening:

I some domains have infinite ascending chains:
[0, 0] [0, 1] [0, 2] . . .

I widening is needed for termination

Definition:
Given a domain D, define ∇ : D ×D → D such that ∀x , y ∈ D:

x v x∇y and y v x∇y

and for all increasing chains x0 v x1 v . . . the increasing chain
y0 = x0, . . . yi+1 = yi∇xi+1 is eventually stable.

I widening seems to require a modified fixpoint computation

I cannot easily adapt widening strategies

3/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Overview
Improving State after Widening
Real-World Challenges

Widening in Abstract Interpretation

Idea of widening:

I some domains have infinite ascending chains:
[0, 0] [0, 1] [0, 2] . . .

I widening is needed for termination

Definition:
Given a domain D, define ∇ : D ×D → D such that ∀x , y ∈ D:

x v x∇y and y v x∇y

and for all increasing chains x0 v x1 v . . . the increasing chain
y0 = x0, . . . yi+1 = yi∇xi+1 is eventually stable.

I widening seems to require a modified fixpoint computation

I cannot easily adapt widening strategies

3/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Overview
Improving State after Widening
Real-World Challenges

Properties of Narrowing

Narrowing is often required after widening:

I widening introduces imprecision by overshooting the fixpoint

I narrowing can sometimes recover precision

I here: 2nd iter. p0 : x = y , x ∈ [0,∞]; p1 : x = y , x ∈ [6,∞]
3st iter. p0 : x = y , x ∈ [0, 5]; p1 : x = y , x ∈ [6, 6]

1 int x = y = 0;

2 while (x < 6) {

3 p_0:

4 x = x + 1;

5 y = y + 1;

6 }

7 p_1:

Problems:

I need to refine states on all exit points of
the loop

I what if the program contains goto p_1 ?

I alternative: avoid propagating to p1 until
loop is stable

I complicates fixpoint engine and state
management

4/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Overview
Improving State after Widening
Real-World Challenges

Properties of Narrowing

Narrowing is often required after widening:

I widening introduces imprecision by overshooting the fixpoint

I narrowing can sometimes recover precision

I here: 2nd iter. p0 : x = y , x ∈ [0,∞]; p1 : x = y , x ∈ [6,∞]
3st iter. p0 : x = y , x ∈ [0, 5]; p1 : x = y , x ∈ [6, 6]

1 int x = y = 0;

2 while (x < 6) {

3 p_0:

4 x = x + 1;

5 y = y + 1;

6 }

7 p_1:

Problems:

I need to refine states on all exit points of
the loop

I what if the program contains goto p_1 ?

I alternative: avoid propagating to p1 until
loop is stable

I complicates fixpoint engine and state
management

4/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Overview
Improving State after Widening
Real-World Challenges

Widening on Low Level Code

We analyze machine code:

I Control-Flow Graph (CFG) is reconstructed on-the-fly

I → loops entries and exits not known up front

I possibly irreducible CFGs: no best set of widening points

I → need a very robust widening

I → we need to try other heuristics

I → avoid narrowing altogether

Our goal: keep fixpoint engine, implement widenings as plug-ins

5/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Overview
Improving State after Widening
Real-World Challenges

Widening on Low Level Code

We analyze machine code:

I Control-Flow Graph (CFG) is reconstructed on-the-fly

I → loops entries and exits not known up front

I possibly irreducible CFGs: no best set of widening points

I → need a very robust widening

I → we need to try other heuristics

I → avoid narrowing altogether

Our goal: keep fixpoint engine, implement widenings as plug-ins

5/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Co-fibered Abstract Domains

A co-fibered domain 〈D � C,vD�C,tD�C ,uD�C〉 tracks values of
the form 〈d , c〉 ∈ D � C where:

I d is the internal information
tracked by the domain

I c is the child domain

I all operations are defined on 〈d , c〉
I → can execute multiple operations

on the child or none at all

I can translate an operation on
〈d , c〉 into a different operation on
the child

I example: congruence domain stores
x/4 in child if x is multiple of 4

affine equalities
congruences

intervals

6/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Widening as Co-fibered Domains

Idea:
implement widening + heuristics as co-fibered abstract domains.

Namely:

I W: domain inferring widening points

I D: delay domain

I T : widening thresholds domain

I P: guided static analysis domain

widening points

delayed widening

thresholds widening

guided

affine equalities
congruences

intervals

7/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Detection of Widening Points
Widening with Thresholds
Delayed Widening
Guided Static Analysis

Finding Widening Points

Define domain W � C where W = Lab× {T ,F} that applies
widening instead of join on child C.

I l ∈ Lab is a program point and
f ∈ {T ,F} is a Boolean flag

I for termination at least one widening
point in each loop is needed

I use total order on the program points
(instruction addresses) to detect
back-edges

I simple heuristic: any back-edges is
considered an edge to a loop head

I l is smallest previous edge, f is set if
back-edge has been seen

〈a1,T〉

〈a2,T〉

〈a3,F 〉
〈a4,F 〉

〈a3,F 〉

〈a0,F 〉

a0

a1

a2

a3

a4

8/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Detection of Widening Points
Widening with Thresholds
Delayed Widening
Guided Static Analysis

Tracking Widening Thresholds

Define T � C where T : Lab× Pred× ℘(Lab) that applies
thresholds after widening to refine the state.

1 int x = y = 0;

2 while (x < 6) {

3 p_0:

4 x = x + 1;

5 y = y + 1;

6 }

7 p_1:

I l ∈ Lab is the origin of test p ∈ Pred and
a ∈ ℘(Lab) tracks application sites of p

I track redundant tests as thresholds

I thresholds are invariants for the current
state (applying the test does not change
the state)

I here x < 6 is a threshold at line 3

I thresholds are transformed by
assignments, so that they stay invariant

I use thresholds after widening to
immediately restrict the widened state

9/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Detection of Widening Points
Widening with Thresholds
Delayed Widening
Guided Static Analysis

Tracking Widening Thresholds

1 int x = y = 0;

2 while (x < 6) {

3 p_0:

4 x = x + 1;

5 y = y + 1;

6 }

7 p_1:

I collect threshold from redundant test
3: t = 〈2× (x < 6)× {}〉

I transform thresholds with instructions
4: t = 〈2× (x < 6)× {}〉
5: t = 〈2× (x < 7)× {}〉

I apply thresholds only once per widening
point (termination)
2’: t = 〈2× (x < 7)× {}〉
3’: t = 〈2× (x < 7)× {2}〉
→ p0 : x =y , x ∈ [0, 5]; p1 : x =y , x ∈ [6, 6]

I when seeing a threshold again, keep the
transformed one (termination)

I use only the “smallest” thresholds to
restrict widening (retain others)

10/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Detection of Widening Points
Widening with Thresholds
Delayed Widening
Guided Static Analysis

No Widening after Constant Assignments

Define D � C where D : ℘(Lab) is a set of program points with
constant assignments.

1 int x = 0;

2 int y = 0;

3 while (x < 100){

4 if (x > 5) {

5 y = 1;

6 }

7 x = x + 4;

8 }

I problem: widening of y yields
[0, 0]∇[1, 1] = [0,∞]

I common approach is to delay widening for
the first n loop iterations (here: n = 2)

I slows down fixpoint computation
unnecessarily if not needed

I better: do not widen if we have seen a
new constant assignment

I we track program locations with constant
assignments

I when widening D � C, compute a join on
C if there are new constant assignments

11/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Detection of Widening Points
Widening with Thresholds
Delayed Widening
Guided Static Analysis

Guided Static Analysis as Abstract Domain

Define P � C where P : C × (Pred× P)∗ × ℘(Pred).

1 int x = 0;

2 int y = 0;

3 while (true) {

4 if (x <= 50){

5 y++;

6 } else {

7 y--;

8 }

9 if (y<0)

10 break;

11 x++;

12 }

x

y
x > 50

y < 0

50

25 75

I numeric domains usually are convex
approximations

I → precision loss when joining different
states

I idea is to separate the states that belong
to different phases of a loop to avoid
convex approximation of widened states

12/13



Widening in Fixpoint-Based Analyses
Co-fibered Domains

Widening Strategies as Domains

Detection of Widening Points
Widening with Thresholds
Delayed Widening
Guided Static Analysis

Conclusion

I widening/narrowing is a challenge to implement for binary analysis

I combine with interesting widening heuristics in the literature!

I co-fibered domains allow the modular combination of different
strategies

I no adjustment to the fixpoint and state management necessary

I we successfully applied our domain stack to the problems in the
literature

I our combined strategies were more efficient (fewer iterations) than
the current sate of the art

13/13


	Widening in Fixpoint-Based Analyses
	Overview
	Improving State after Widening
	Real-World Challenges

	Co-fibered Domains
	Widening Strategies as Domains
	Detection of Widening Points
	Widening with Thresholds
	Delayed Widening
	Guided Static Analysis


